Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell Death Discov ; 10(1): 68, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336777

RESUMO

Embryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism. Specifically, SMG induces the upregulation of heat shock protein genes, subsequently enhancing the expression of core pluripotency factors and activating the Wnt and/or LIF/STAT3 signaling pathways, thereby fostering ESC self-renewal. Notably, heightened Wnt pathway activity, facilitated by Tbx3 upregulation, prompts mesoendodermal differentiation in both murine and human ESCs under SMG conditions. Recognizing potential disparities between terrestrial SMG simulations and authentic microgravity, forthcoming space flight experiments are imperative to validate the impact of reduced gravity on ESC self-renewal and differentiation mechanisms.

2.
Int J Biol Sci ; 20(4): 1142-1159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385086

RESUMO

Human embryonic stem cells (hESCs) can proliferate infinitely (self-renewal) and give rise to almost all types of somatic cells (pluripotency). Hence, understanding the molecular mechanism of pluripotency regulation is important for applications of hESCs in regenerative medicine. Here we report that PATZ1 is a key factor that regulates pluripotency and metabolism in hESCs. We found that depletion of PATZ1 is associated with rapid downregulation of master pluripotency genes and prominent deceleration of cell growth. We also revealed that PATZ1 regulates hESC pluripotency though binding the regulatory regions of OCT4 and NANOG. In addition, we demonstrated PATZ1 is a key node in the OCT4/NANOG transcriptional network. We further revealed that PATZ1 is essential for cell growth in hESCs. Importantly, we discovered that depletion of PATZ1 drives hESCs to exploit glycolysis which energetically compensates for the mitochondrial dysfunction. Overall, our study establishes the fundamental role of PATZ1 in regulating pluripotency in hESCs. Moreover, PATZ1 is essential for maintaining a steady metabolic homeostasis to refine the stemness of hESCs.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Zinco , Motivos AT-Hook , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco , Proteínas Repressoras/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo
3.
Nucleic Acids Res ; 51(21): 11634-11651, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870468

RESUMO

Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-ß, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, ß-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-ß/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-ß/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.


Assuntos
Células-Tronco Embrionárias Humanas , Neoplasias , Humanos , Fator de Crescimento Transformador beta/genética , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Ativinas/metabolismo , Via de Sinalização Wnt , Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Clin Cancer Res ; 29(19): 3986-4001, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37527025

RESUMO

PURPOSE: Sarcoma is the second most common solid tumor type in children and adolescents. The high level of tumor heterogeneity as well as aggressive behavior of sarcomas brings serious difficulties to developing effective therapeutic strategies for clinical application. Therefore, it is of great importance to identify accurate biomarkers for early detection and prognostic prediction of sarcomas. EXPERIMENTAL DESIGN: In this study, we characterized three subtypes of sarcomas based on tumor immune infiltration levels (TIIL), and constructed a prognosis-related competing endogenous RNA (ceRNA) network to investigate molecular regulations in the sarcoma tumor microenvironment (TME). We further built a subnetwork consisting of mRNAs and lncRNAs that are targets of key miRNAs and strongly correlated with each other in the ceRNA network. After validation using public data and experiments in vivo and in vitro, we deeply dug the biological role of the miRNAs and lncRNAs in a subnetwork and their impact on TME. RESULTS: Altogether, 5 miRNAs (hsa-mir-125b-2, hsa-mir-135a-1, hsa-mir92a-2, hsa-mir-181a-2, and hsa-mir-214), 3 lncRNAs (LINC00641, LINC01146, and LINC00892), and 10 mRNAs (AGO2, CXCL10, CD86, CASP1, IKZF1, CD27, CD247, CD69, CCR2, and CSF2RB) in the subnetwork were identified as vital regulators to shape the TME. On the basis of the systematic network, we identified that trichostatin A, a pan-HDAC inhibitor, could potentially regulate the TME of sarcoma, thereby inhibiting the tumor growth. CONCLUSIONS: Our study identifies a ceRNA network as a promising biomarker for sarcoma. This system provides a more comprehensive understanding and a novel perspective of how ceRNAs are involved in shaping sarcoma TME.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sarcoma , Criança , Humanos , Adolescente , Prognóstico , RNA Longo não Codificante/genética , Microambiente Tumoral/genética , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Sarcoma/genética
5.
Biomark Res ; 11(1): 63, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287049

RESUMO

The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.

6.
Commun Biol ; 6(1): 476, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127734

RESUMO

Mesenchymal stem/Stromal cells (MSCs) have great therapeutic potentials, and they have been isolated from various tissues and organs including definitive endoderm (DE) organs, such as the lung, liver and intestine. MSCs have been induced from human pluripotent stem cells (hPSCs) through multiple embryonic lineages, including the mesoderm, neural crest, and extraembryonic cells. However, it remains unclear whether hPSCs could give rise to MSCs in vitro through the endodermal lineage. Here, we report that hPSC-derived, SOX17+ definitive endoderm progenitors can further differentiate to cells expressing classic MSC markers, which we name definitive endoderm-derived MSCs (DE-MSCs). Single cell RNA sequencing demonstrates the stepwise emergence of DE-MSCs, while endoderm-specific gene expression can be elevated by signaling modulation. DE-MSCs display multipotency and immunomodulatory activity in vitro and possess therapeutic effects in a mouse ulcerative colitis model. This study reveals that, in addition to the other germ layers, the definitive endoderm can also contribute to MSCs and DE-MSCs could be a cell source for regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Fígado , Mesoderma
7.
Stem Cells ; 41(6): 578-591, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36648303

RESUMO

The interplay among mitogenic signaling pathways is crucial for proper embryogenesis. These pathways collaboratively act through intracellular master regulators to determine specific cell fates. Identifying the master regulators is critical to understanding embryogenesis and to developing new applications of pluripotent stem cells. In this report, we demonstrate protein kinase C (PKC) as an intrinsic master switch between embryonic and extraembryonic cell fates in the differentiation of human pluripotent stem cells (hPSCs). PKCs are essential to induce the extraembryonic lineage downstream of BMP4 and other mitogenic modulators. PKC-alpha (PKCα) suppresses BMP4-induced mesoderm differentiation, and PKC-delta (PKCδ) is required for trophoblast cell fate. PKC activation overrides mesoderm induction conditions and leads to extraembryonic fate. In contrast, PKC inhibition leads to ß-catenin (CTNNB1) activation, switching cell fate from trophoblast to mesoderm lineages. This study establishes PKC as a signaling boundary directing the segregation of extraembryonic and embryonic lineages. The manipulation of intrinsic PKC activity could greatly enhance cell differentiation under mitogenic regulation in stem cell applications.


Assuntos
Células-Tronco Pluripotentes , Proteína Quinase C , Humanos , Proteína Quinase C/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Mesoderma/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo
8.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675314

RESUMO

Brown planthopper (BPH), a monophagous phloem feeder, consumes a large amount of photoassimilates in rice and causes wilting. A near-isogenic line 'TNG71-Bph45' was developed from the Oryza sativa japonica variety 'Tainung 71 (TNG71) carrying a dominant BPH-resistance locus derived from Oryza nivara (IRGC 102165) near the centromere of chromosome 4. We compared the NIL (TNG71-Bph45) and the recurrent parent to explore how the Bph45 gene confers BPH resistance. We found that TNG71-Bph45 is less attractive to BPH at least partially because it produces less limonene. Chiral analysis revealed that the major form of limonene in both rice lines was the L-form. However, both L- and D-limonene attracted BPH when applied exogenously to TNG71-Bph45 rice. The transcript amounts of limonene synthase were significantly higher in TNG71 than in TNG71-Bph45 and were induced by BPH infestation only in the former. Introgression of the Bph45 gene into another japonica variety, Tainan 11, also resulted in a low limonene content. Moreover, several dominantly acting BPH resistance genes introduced into the BPH-sensitive IR24 line compromised its limonene-producing ability and concurrently decreased its attractiveness to BPH. These observations suggest that reducing limonene production may be a common resistance strategy against BPH in rice.


Assuntos
Hemípteros , Oryza , Animais , Genes de Plantas , Hemípteros/genética , Limoneno , Oryza/genética , Doenças das Plantas/genética
9.
Cancer Res ; 83(6): 906-921, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634207

RESUMO

Sex is known to be an important factor in the incidence, progression, and outcome of cancer. A better understanding of the underlying mechanisms could help improve cancer prevention and treatment. Here, we demonstrated a crucial role of antitumor immunity in the sex differences in cancer. Consistent with observations in human cancers, male mice showed accelerated tumor progression compared with females, but these differences were not observed in immunodeficient mice. Androgen signaling suppressed T-cell immunity against cancer in males. Mechanistically, androgen-activated androgen receptor upregulated expression of USP18, which inhibited TAK1 phosphorylation and the subsequent activation of NF-κB in antitumor T cells. Reduction of testosterone synthesis by surgical castration or using the small-molecular inhibitor abiraterone significantly enhanced the antitumor activity of T cells in male mice and improved the efficacy of anti-PD-1 immunotherapy. Together, this study revealed a novel mechanism contributing to sex differences in cancer. These results indicate that inhibition of androgen signaling is a promising approach to improve the efficacy of immunotherapy in males. SIGNIFICANCE: Androgen signaling induces immunosuppression in cancer by blocking T-cell activity through upregulation of USP18 and subsequent inhibition of NF-κB activity, providing a targetable axis to improve antitumor immunity in males.


Assuntos
NF-kappa B , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Feminino , Animais , Camundongos , NF-kappa B/metabolismo , Androgênios/metabolismo , Caracteres Sexuais , Regulação Neoplásica da Expressão Gênica , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/metabolismo
10.
EMBO Mol Med ; 15(2): e16671, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36541165

RESUMO

Nonhealing diabetic wounds, with persistent inflammation and damaged vasculature, have failed conventional treatments and require comprehensive interference. Here, inspired by tumor-associated macrophages (TAMs) that produce abundant immunosuppressive and proliferative factors in tumor development, we generate macrophages to recapitulate TAMs' reparative functions, by culturing normal macrophages with TAMs' conditional medium (TAMs-CM). These TAMs-educated macrophages (TAMEMs) outperform major macrophage phenotypes (M0, M1, or M2) in suppressing inflammation, stimulating angiogenesis, and activating fibroblasts in vitro. When delivered to skin wounds in diabetic mice, TAMEMs efficiently promote healing. Based on TAMs-CM's composition, we further reconstitute a nine-factor cocktail to train human primary monocytes into TAMEMsC-h , which fully resemble TAMEMs' functions without using tumor components, thereby having increased safety and enabling the preparation of autologous cells. Our study demonstrates that recapitulating TAMs' unique reparative activities in nontumor cells can lead to an effective cell therapeutic approach with high translational potential for regenerative medicine.


Assuntos
Diabetes Mellitus Experimental , Neoplasias , Humanos , Camundongos , Animais , Macrófagos Associados a Tumor , Macrófagos/patologia , Cicatrização , Neoplasias/patologia , Inflamação/patologia
11.
Int J Biol Sci ; 18(12): 4768-4780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874958

RESUMO

The pandemic of COVID-19 is the biggest public health crisis in 21st Century. Besides the acute symptoms after infection, patients and society are also being challenged by the long-term health complications associated with COVID-19, commonly known as long COVID. While health professionals work hard to find proper treatments, large amount of knowledge has been accumulated in recent years. In order to deal with long COVID efficiently, it is important for people to keep up with current progresses and take proactive actions on long COVID. For this purpose, this review will first introduce the general background of long COVID, and then discuss its risk factors, diagnostic indicators and management strategies. This review will serve as a useful resource for people to understand and prepare for long COVID that will be with us in the foreseeable future.


Assuntos
COVID-19 , COVID-19/complicações , Pessoal de Saúde , Humanos , Pandemias , SARS-CoV-2 , Síndrome Pós-COVID-19 Aguda
12.
Int J Biol Sci ; 18(9): 3562-3575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813470

RESUMO

Insulin is essential for diverse biological processes in human pluripotent stem cells (hPSCs). However, the underlying mechanism of insulin's multitasking ability remains largely unknown. Here, we show that insulin controls hPSC survival and proliferation by modulating RNA translation via distinct pathways. It activates AKT signaling to inhibit RNA translation of pro-apoptotic proteins such as NOXA/PMAIP1, thereby promoting hPSC survival. At the same time, insulin acts via the mTOR pathway to enhance another set of RNA translation for cell proliferation. Consistently, mTOR inhibition by rapamycin results in eIF4E phosphorylation and translational repression. It leads to a dormant state with sustained pluripotency but reduced cell growth. Together, our study uncovered multifaceted regulation by insulin in hPSC survival and proliferation, and highlighted RNA translation as a key step to mediate mitogenic regulation in hPSCs.


Assuntos
Insulina , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos , Insulina/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Front Cell Dev Biol ; 10: 865038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399519

RESUMO

Somatic cells can be chemically reprogrammed into a pluripotent stem cell (CiPSC) state, mediated by an extraembryonic endoderm- (XEN-) like state. We found that the chemical cocktail applied in CiPSC generation initially activated a plastic state in mouse fibroblasts before transitioning into XEN-like cells. The plastic state was characterized by broadly activated expression of development-associated transcription factors (TFs), such as Sox17, Ascl1, Tbx3, and Nkx6-1, with a more accessible chromatin state indicating an enhanced capability of cell fate conversion. Intriguingly, introducing such a plastic state remarkably improved the efficiency of chemical reprogramming from fibroblasts to functional neuron-like cells with electrophysiological activity or beating skeletal muscles. Furthermore, the generation of chemically induced neuron-like cells or skeletal muscles from mouse fibroblasts was independent of the intermediate XEN-like state or the pluripotency state. In summary, our findings revealed a plastic chemically activated multi-lineage priming (CaMP) state at the onset of chemical reprogramming. This state enhanced the cells' potential to adapt to other cell fates. It provides a general approach to empowering chemical reprogramming methods to obtain functional cell types bypassing inducing pluripotent stem cells.

14.
Stem Cell Res Ther ; 13(1): 120, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313973

RESUMO

BACKGROUND: Thyroid hormone triiodothyronine (T3) is essential for embryogenesis and is commonly used during in vitro fertilization to ensure successful implantation. However, the regulatory mechanisms of T3 during early embryogenesis are largely unknown. METHOD: To study the impact of T3 on hPSCs, cell survival and growth were evaluated by measurement of cell growth curve, cloning efficiency, survival after passaging, cell apoptosis, and cell cycle status. Pluripotency was evaluated by RT-qPCR, immunostaining and FACS analysis of pluripotency markers. Metabolic status was analyzed using LC-MS/MS and Seahorse XF Cell Mito Stress Test. Global gene expression was analyzed using RNA-seq. To study the impact of T3 on lineage-specific differentiation, cells were subjected to T3 treatment during differentiation, and the outcome was evaluated using RT-qPCR, immunostaining and FACS analysis of lineage-specific markers. RESULTS: In this report, we use human pluripotent stem cells (hPSCs) to show that T3 is beneficial for stem cell maintenance and promotes trophoblast differentiation. T3 enhances culture consistency by improving cell survival and passaging efficiency. It also modulates cellular metabolism and promotes energy production through oxidative phosphorylation. T3 helps maintain pluripotency by promoting ERK and SMAD2 signaling and reduces FGF2 dependence in chemically defined culture. Under BMP4 induction, T3 significantly enhances trophoblast differentiation. CONCLUSION: In summary, our study reveals the impact of T3 on stem cell culture through signal transduction and metabolism and highlights its potential role in improving stem cell applications.


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular/fisiologia , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem , Hormônios Tireóideos
15.
Cell Rep ; 37(9): 110063, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852227

RESUMO

Pluripotent stem cells (PSCs) can be maintained in a continuum of cellular states with distinct features. Exogenous lipid supplements can relieve the dependence on de novo lipogenesis and shift global metabolism. However, it is largely unexplored how specific lipid components regulate metabolism and subsequently the pluripotency state. In this study, we report that the metabolic landscape of human PSCs (hPSCs) is shifted by signaling lipid lysophosphatidic acid (LPA), which naturally exists. LPA leads to a distinctive transcriptome profile that is not associated with de novo lipogenesis. Although exogenous lipids such as cholesterol, common free fatty acids, and LPA can affect cellular metabolism, they are not necessary for maintaining primed pluripotency. Instead, LPA induces distinct and reversible phenotypes in cell cycle, morphology, and mitochondria. This study reveals a distinct primed state that could be used to alter cell physiology in hPSCs for basic research and stem cell applications.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Lipogênese , Lisofosfolipídeos/farmacologia , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Diferenciação Celular , Colesterol/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Células HEK293 , Humanos , Células-Tronco Pluripotentes/citologia
16.
Cell Death Dis ; 12(12): 1119, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845199

RESUMO

Nicotinamide, the amide form of Vitamin B3, is a common nutrient supplement that plays important role in human fetal development. Nicotinamide has been widely used in clinical treatments, including the treatment of diseases during pregnancy. However, its impacts during embryogenesis have not been fully understood. In this study, we show that nicotinamide plays multiplex roles in mesoderm differentiation of human embryonic stem cells (hESCs). Nicotinamide promotes cardiomyocyte fate from mesoderm progenitor cells, and suppresses the emergence of other cell types. Independent of its functions in PARP and Sirtuin pathways, nicotinamide modulates differentiation through kinase inhibition. A KINOMEscan assay identifies 14 novel nicotinamide targets among 468 kinase candidates. We demonstrate that nicotinamide promotes cardiomyocyte differentiation through p38 MAP kinase inhibition. Furthermore, we show that nicotinamide enhances cardiomyocyte survival as a Rho-associated protein kinase (ROCK) inhibitor. This study reveals nicotinamide as a pleiotropic molecule that promotes the derivation and survival of cardiomyocytes, and it could become a useful tool for cardiomyocyte production for regenerative medicine. It also provides a theoretical foundation for physicians when nicotinamide is considered for treatments for pregnant women.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Niacinamida/uso terapêutico , Fosfotransferases/antagonistas & inibidores , Células-Tronco Pluripotentes/metabolismo , Medicina Regenerativa/métodos , Complexo Vitamínico B/uso terapêutico , Animais , Diferenciação Celular , Feminino , Humanos , Niacinamida/farmacologia , Complexo Vitamínico B/farmacologia , Peixe-Zebra
17.
Cell Mol Life Sci ; 78(24): 8097-8108, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34773132

RESUMO

All living organisms need energy to carry out their essential functions. The importance of energy metabolism is increasingly recognized in human pluripotent stem cells. Energy production is not only essential for cell survival and proliferation, but also critical for pluripotency and cell fate determination. Thus, energy metabolism is an important target in cellular regulation and stem cell applications. In this review, we will discuss key factors that influence energy metabolism and their association with stem cell functions.


Assuntos
Diferenciação Celular , Reprogramação Celular , Metabolismo Energético , Glicólise , Fosforilação Oxidativa , Células-Tronco Pluripotentes/fisiologia , Animais , Humanos , Células-Tronco Pluripotentes/citologia
18.
STAR Protoc ; 2(3): 100740, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467226

RESUMO

Metabolic homeostasis is critical for cell pluripotency and differentiation in human embryonic stem cells (hESCs). It has been reported that metabolic changes specifically regulate cellular signaling during hESC differentiation. This protocol describes procedures for both cell culture and detection of intracellular and extracellular metabolites in hESCs by liquid chromatography-mass spectrometry. Metabolites in glycolysis, citric acid cycle, pentose phosphate pathway, and other metabolic processes can be detected using this approach. For complete details on the use and execution of this protocol, please refer to Song et al., (2019), Yang et al., (2019), Meng et al., (2018), and Chen et al., (2011b).


Assuntos
Técnicas de Cultura de Células/métodos , Espaço Extracelular , Células-Tronco Embrionárias Humanas , Espaço Intracelular , Metabolômica/métodos , Diferenciação Celular , Células Cultivadas , Cromatografia Líquida , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Glicólise/fisiologia , Células-Tronco Embrionárias Humanas/química , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Espectrometria de Massas , Metaboloma/fisiologia
19.
Stem Cell Res Ther ; 12(1): 362, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172095

RESUMO

BACKGROUND: Vitamin B3 (nicotinamide) plays important roles in metabolism as well as in SIRT and PARP pathways. It is also recently reported as a novel kinase inhibitor with multiple targets. Nicotinamide promotes pancreatic cell differentiation from human embryonic stem cells (hESCs). However, its molecular mechanism is still unclear. In order to understand the molecular mechanism involved in pancreatic cell fate determination, we analyzed the downstream pathways of nicotinamide in the derivation of NKX6.1+ pancreatic progenitors from hESCs. METHODS: We applied downstream modulators of nicotinamide during the induction from posterior foregut to pancreatic progenitors, including niacin, PARP inhibitor, SIRT inhibitor, CK1 inhibitor and ROCK inhibitor. The impact of those treatments was evaluated by quantitative real-time PCR, flow cytometry and immunostaining of pancreatic markers. Furthermore, CK1 isoforms were knocked down to validate CK1 function in the induction of pancreatic progenitors. Finally, RNA-seq was used to demonstrate pancreatic induction on the transcriptomic level. RESULTS: First, we demonstrated that nicotinamide promoted pancreatic progenitor differentiation in chemically defined conditions, but it did not act through either niacin-associated metabolism or the inhibition of PARP and SIRT pathways. In contrast, nicotinamide modulated differentiation through CK1 and ROCK inhibition. We demonstrated that CK1 inhibitors promoted the generation of PDX1/NKX6.1 double-positive pancreatic progenitor cells. shRNA knockdown revealed that the inhibition of CK1α and CK1ε promoted pancreatic progenitor differentiation. We then showed that nicotinamide also improved pancreatic progenitor differentiation through ROCK inhibition. Finally, RNA-seq data showed that CK1 and ROCK inhibition led to pancreatic gene expression, similar to nicotinamide treatment. CONCLUSIONS: In this report, we revealed that nicotinamide promotes generation of pancreatic progenitors from hESCs through CK1 and ROCK inhibition. Furthermore, we discovered the novel role of CK1 in pancreatic cell fate determination.


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular , Endoderma , Humanos , Niacinamida/farmacologia , Pâncreas
20.
J Hematol Oncol ; 14(1): 21, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514401

RESUMO

BACKGROUND: B7-H3, an immune-checkpoint molecule and a transmembrane protein, is overexpressed in non-small cell lung cancer (NSCLC), making it an attractive therapeutic target. Here, we aimed to systematically evaluate the value of B7-H3 as a target in NSCLC via T cells expressing B7-H3-specific chimeric antigen receptors (CARs) and bispecific killer cell engager (BiKE)-redirected natural killer (NK) cells. METHODS: We generated B7-H3 CAR and B7-H3/CD16 BiKE derived from an anti-B7-H3 antibody omburtamab that has been shown to preferentially bind tumor tissues and has been safely used in humans in early-phase clinical trials. Antitumor efficacy and induced-immune response of CAR and BiKE were evaluated in vitro and in vivo. The effects of B7-H3 on aerobic glycolysis in NSCLC cells were further investigated. RESULTS: B7-H3 CAR-T cells effectively inhibited NSCLC tumorigenesis in vitro and in vivo. B7-H3 redirection promoted highly specific T-cell infiltration into tumors. Additionally, NK cell activity could be specially triggered by B7-H3/CD16 BiKE through direct CD16 signaling, resulting in significant increase in NK cell activation and target cell death. BiKE improved antitumor efficacy mediated by NK cells in vitro and in vivo, regardless of the cell surface target antigen density on tumor tissues. Furthermore, we found that anti-B7-H3 blockade might alter tumor glucose metabolism via the reactive oxygen species-mediated pathway. CONCLUSIONS: Together, our results suggest that B7-H3 may serve as a target for NSCLC therapy and support the further development of two therapeutic agents in the preclinical and clinical studies.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Animais , Anticorpos Biespecíficos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Ativação Linfocitária , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...